Wiskunde.netLogo Wiskunde


TIP: Wil je ook toegang tot meer dan 16.000 video-uitwerkingen? Meld je dan snel aan! Klik hier...

Antwoorden 6.2 Rechthoekige driehoek VMBO 2 KGT

Boek: Getal & Ruimte - Stelling van Pythagoras VMBO 2 (deel 2) opgaven 19 t/m 29, 2009
Een rechthoekige driehoek is een driehoek waarvan 1 hoek een rechte hoek is, oftewel gelijk is aan 90º (graden). De langste zijde ligt tegenover de rechte hoek. De andere 2 zijden zitten vast aan de rechte hoek. Daarom noemen we deze rechthoekszijden.
19.
Tip:
Een gelijkzijdige driehoek is een bijzondere gelijkbenige driehoek.
a. Gelijkbenige driehoeken zijn: a, b en i
b. Driehoek e is gelijkzijdig.
c. Rechthoekige driehoeken zijn b, c, d, i en j.
d. Driehoeken b en i zijn zowel gelijkbenig als rechthoekig.

20.
Tip:
Een rechte hoek (∠A) geven we aan met een (rode) winkelhaak.
a. Zie afbeelding
b. BC is de langste zijde, deze is 5 cm
Wiskunde antwoorden
21.
a. Zie afbeelding
b. PQ is de langste zijde, deze is 5 cm
Wiskunde antwoorden
22.
Tip:
Gegeven driehoek XYZ. Als ∠X de rechte hoek is, dan vormen de 2 overgebleven letters de langste zijde. Dus YZ is de langste / schuine zijde.
a. Zie afbeelding. Ja, het klopt wat hij zegt.
b. De langste zijde is de zijde met de andere 2 letters dan die van de rechte hoek.
Wiskunde antwoorden
23.
*

24.
a.
KLM: LM
DEF: DE
ABC: AB
PQR: QR
RST: RT
b.
KLM: KM en KL
DEF: EF en DF
ABC: AC en BC
PQR: PQ en PR
RST: RS en ST

25.
driehoek langste zijde 2 korte zijden
ABC AC AB en BC
ABD AB AD en BD
BDE BD BE en DE
BDC BC BD en CD
DEC DC DE en CE


26.
a. ADHE is een rechthoek
b. en c. Zie afbeelding
d. Van driehoek ADH en driehoek AEH
Wiskunde antwoorden
27.
Tip:
In een getekende kubus zijn er vele rechte hoeken die op het eerst gezicht niet recht lijken.
a. ∠B is recht
b. AC
c. EF en GF
d. ∠H is recht

28.
a. en b. Zie afbeelding
c. AB is de langste zijde
d. De 2 korte zijden zijn 4 cm
Wiskunde antwoorden
29.
a. Zie afbeelding
b. R kan liggen op (3,3) en (-1,-2)
c. *
d. De 2 korte zijden zijn 4 en 5 cm.
Wiskunde antwoorden

Andere paragrafen:
6.1. Kwadraten en wortels (1 t/m 18)
6.2. Rechthoekige driehoek (19 t/m 29)
6.3. De stelling van Pythagoras (30 t/m 40)
6.4. Toepassingen van Pythagoras (41 t/m 52)
6.5. Gemengde opgaven (53 t/m 61)

Geef je mening aan ons:
Review
Tevreden? Laat het ons weten!
Schrijf een review...

Uniek voor docenten en scholen:
Op school
Onze video's op uw school via WIFI? Meld mijn school aan...

Nog geen abonnement? Vraag het je ouders!
Vraag ouders
Meld mij aan...

Hoe maken wij onze video's?
Word ook lid!


Een virtuele tour:
Hoe werkt wiskunde.net?